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ABSTRACT: Effective strategies for mimicking α-helix and β-
strand epitopes have been developed, producing valuable
inhibitors for some classes of protein−protein interactions
(PPIs). However, there are no general strategies for translating
loop epitopes into useful PPI inhibitors. In this work, we use
the LoopFinder program to identify diverse sets of “hot loops,”
which are loop epitopes that mediate PPIs. These include
loops that are well-suited to mimicry with macrocyclic
compounds, and loops that are most similar to variable loops
on antibodies and ankyrin repeat proteins. We present data-
driven criteria for scoring loop-mediated PPIs, uncovering a
trove of potentially druggable interactions. We also use
unbiased clustering to identify common structures among the
hot loops. To translate these insights into real-world inhibitors,
we describe a robust, diversity-oriented strategy for the rapid production and evaluation of cyclized loops. This method is applied
to a computationally identified loop in the PPI between stonin2 and Eps15, producing submicromolar inhibitors. The most
potent inhibitor is well-structured in water and successfully mimics the native epitope. Overall, these computational and
experimental strategies provide new opportunities to design inhibitors for an otherwise intractable set of PPIs.

■ INTRODUCTION

Protein−protein interactions (PPIs) are increasingly important
as therapeutic targets, but small molecules often have low
affinity for PPI interfaces.1,2 Constrained peptides are generally
more capable of binding the large, flat surfaces associated with
PPIs.3,4 Modified peptides are increasingly sought after as drug
leads due to their high potency, selectivity, and lower overall
potential for toxicity.5 Many design and molecular evolution
strategies are available for producing peptides that act as PPI
inhibitors, and many of these strategies require (or work better
with) starting points that incorporate natural binding
epitopes.6−10 Identification of such epitopes has been facilitated
by computational alanine scanning, which calculates the change
in binding free energy when a specific residue is mutated to
alanine (ΔΔGres). Such computational methods have been
shown to be reasonably predictive and have led to the discovery
of many new PPI epitopes within the Protein Data Bank
(PDB).11−15 Separate studies have scoured the PDB to identify
and analyze PPIs involving α-helices,16,17 helical dimers,18 and
β-strands.19 Analysis of other PPI interfaces can be more
challenging, because they do not depend on well-defined
secondary structures and are not identified by existing
programs.
In 2014, we introduced LoopFinder, a program which

identifies PPIs mediated by loop structures.20 We define loop
structures not as segments lacking secondary structure, but as
segments of variable structure that position their termini in

close proximity (often called “omega loops”).21 LoopFinder
allowed the identification of 1407 “hot loops” that computa-
tional energy analysis indicated were important for their
respective PPIs. These PPIs were largely orthogonal to sets
of PPIs identified by other PDB-wide analyses, demonstrating
that many overlooked, potentially druggable PPIs are mediated
by loops.
In this work, we improved LoopFinder energy calculations

and benchmarked them to real-world values for peptide−
protein interactions. Then, we applied LoopFinder more
broadly to uncover hundreds of new hot loops, including
common loop structures found in antibody complementarity-
determining regions (CDRs) and ankyrin repeat proteins.
Because loops are more varied in structure than helices or
sheets, we wanted to ask whether recurring structures would be
observed within the macrocycle loop set. Thus, we
implemented a sophisticated clustering algorithm, and isolated
29 specific clusters that are commonly observed among hot
loops of 4−8 amino acids. The improved LoopFinder analysis
and database of hot loops provide unprecedented insight into
this overlooked class of PPI.
In many cases, translating α-helix and β-strand epitopes into

potent PPI inhibitors has required the development of specific
intramolecular cross-links that stabilize the desired secondary
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structure.22−24 Because loops are so varied in structure, we
anticipated that translating hot loops into macrocyclic PPI
inhibitors would not be amenable to a similar “one-size-fits-all”
approach. Instead, we devised a strategy that could systemati-
cally vary conformational constraints using a robust, sequence-
tolerant macrocyclization reaction. Here, we report the
successful application of this diversity-oriented approach to
the LoopFinder-identified hot loop between stonin2 and
Eps15, identifying the first submicromolar inhibitors for this
PPI. This methodology is independent of structure, and should
be useful for the general translation of hot loops into useful PPI
inhibitors.

■ RESULTS AND DISCUSSION

Revisiting Energy Calculations for the Macrocycle
Loop Set. In the first analysis of loop-mediated PPIs,20 some
common assumptions caused many loop energies to be
underestimated. In order to capture a complete picture of
loop-mediated PPIs, we revisited several of these assumptions.
First, the criteria for picking out “hot loops” had been arbitrarily
defined, and it would be highly desirable to benchmark these to
known peptide−protein interactions. Also, we found that loops
were enriched in negative ΔΔGres values as calculated by
Rosetta-based alanine scanning. While previous applications of
Rosetta-based alanine scanning had ignored these occurren-
ces,14−19 we found that our loop sets required more nuanced
interpretation. These improvements, described below, have
dramatically increased the number and quality of hot loops
identified with LoopFinder.
For the production of more extensive loop sets, 27 938 PPI

structures were downloaded from the PDB in May 2015. Loops
are defined by three customizable parameters: a range for loop
length in residues, a maximum distance between terminal Cα

atoms, and the percent of residues judged to be at the interface
(within 6.5 Å of the partner chain). The first new loop set we
produced was an updated set of “macrocycle loops”: these
loops are judged to be most suitable for direct translation into
macrocycles that inhibit the associated PPI. The macrocycle
loop set consists of continuous stretches of 4−8 amino acids
with the terminal Cα atoms ≤6.2 Å apart (shorter cutoffs were
used for loops of 4 and 5 residues as described20,25) and with at
least 80% of their residues at the interface.
Once loops were identified, they were subjected to

computational alanine scanning using Rosetta energetics,

producing ΔΔGres values for each amino acid (measured in
Rosetta Energy Units or REUs; 1 REU is commonly equated to
roughly 1 kcal/mol). As noted by us and others, alanine
scanning using Rosetta can produce negative ΔΔGres
values.14,15 These are commonly ignored as neutral interactions
since stabilizing alanine substitutions that have been exper-
imentally validated are rare, and these seldom have free energy
differences more negative than −0.9 kcal/mol.14,15 Loop-
mediated interactions appear to have an unusually large
proportion of negative calculated ΔΔGres values. We attribute
this to Rosetta energy functions being optimized for protein
structures at large, which are primarily composed of regular
secondary structures. It may also be that loop structures have
greater cooperativity among individual residues, a feature
known to be underestimated in Rosetta-based alanine
scanning.15 Overall, this may suggest that current energy
models could be updated to describe more accurately energies
of residues within loop structures. This is consistent with recent
efforts to model accurately macrocycle structure and dynamics,
which typically require custom force fields and advanced
sampling algorithms.26−28 In loops containing amino acids with
negative ΔΔGres values, we observed that residues with the
largest negative ΔΔGres values typically had large extents of
buried surface area at the interface and/or atoms participating
in poorly aligned hydrogen bonds. On the basis of these
observations, we used a conservative cutoff of −2.0 REU as the
ΔΔGres, below which a residue was highly likely to be a hot
spot. For subsequent analysis, the ΔΔGres of these residues
were adjusted to 1.0 REU. All ΔΔGres values between −2 and 0
REU were adjusted to 0 REU to negate any effects on
subsequent calculations and hot loop identification.

New, Data-Driven Criteria for Identifying Hot Loops.
Our previous analysis of LoopFinder results used arbitrary
cutoffs for defining important epitopes, as have previous
analyses of other PPI interfaces.16−20 To benchmark hot loop
criteria to real-world binding data, we identified well-
characterized peptide−protein interactions within the macro-
cycle loop set. Twelve such peptide−protein interactions were
identified, 8 of which had reported Kd or Ki values (Supporting
Information, Table S1). Most of the interactions had affinities
in the submicromolar range. The values for the average ΔΔGres
for the hot loops identified within these peptides were mainly
between 0.6 and 1.0 REU per residue. Thus, to capture hot
loops similar to these, hot spots were redefined as residues with

Figure 1. Defining and identifying hot loops. Venn diagrams showing hot loops as identified for the (a) macrocycle and (b) DARPin-like loop sets.
Loop counts for each of the three specific hot loop criteria, and loop counts for all overlapping regions, are shown. The central region consists of hot
loops that fit all three criteria, and represents the optimal loops for designing inhibitors of their associated PPIs. Similar data for additional loop sets
are shown in Figure S2.
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ΔΔGres ≥ 0.60 REU. We also used this benchmark to adjust
our criterion for classifying hot loops based on average ΔΔGres
over the whole loop, specifying that hot loops should have an
average ΔΔGres of at least 0.60 REU per residue.
A second criterion for identifying hot loops is number of hot

spots. Loops that mediate PPIs using three or more hot spots
were categorized as hot loops. We note that loops with only
one or two hot spots may be more readily identified using
structure-independent hot spot analysis. They may also be
more readily mimicked by small molecules rather than
macrocycles or other molecules with larger surface area.
The third criterion for selecting hot loops is percent of the

overall interface energy represented within the loop. Interface
energies were calculated as the sum of ΔΔGres values for all
residues at the interface, consistent with prior work.18 The
cutoff for percent interface energy was chosen at 50% so that
hot loops would contain a majority of the binding energy of
their interfaces.
Using these new criteria, 7225 loops from the macrocycle

loop set were identified as satisfying one or more criteria. All
together, these data-driven criteria identified over 5-fold more
hot loops than were found previously.20 Of these hot loops,
1666 fulfill multiple hot loop criteria, and 210 fulfill all three
(Figure 1a). These represent the best starting points for
macrocycle design.
Additional Loop Sets with Diverse Parameters.

Identification of hot loops has applications beyond macrocycle
design. For instance, antibodies and ankyrin repeat proteins
(natural and engineered) are among the most versatile
molecules for protein recognition. Both these scaffolds use
loop epitopes to mediate PPIs, and replacement of loop
epitopes in antibodies and designed ankyrin repeat proteins
(DARPins) is a common strategy for the development of
proteins with novel fuctions.29−31 To identify hot loops
consistent with structures of antibody CDR loops and DARPin
loops, we ran a comprehensive PDB-wide search using
additional sets of loop definition parameters (SI, Table S2).
These parameters defined four groups of loops: H1/L1-like,
H2/L2/L3-like, H3-like, and DARPin-like. Each of these loop
sets were larger in size (each with 300 000 to 1.6 million
nonredundant loops, see SI, Table S3) and more diverse in
structure than the macrocycle loop set. To pull out only the
most important of these loops, we applied the same hot loop

criteria as the macrocycle loop set, except we required hot loops
to have at least 4 hot spots (rather than 3) due to the longer
loop lengths. These criteria identified between 11166 and
25141 hot loops for each of these four loop sets, and a total of
1638 loops across all five loop sets that meet all three hot loop
criteria (Figure 1 and SI, Figure S2). Overall, these represent a
wealth of new, potentially druggable PPIs, each with an
associated hot loop suitable for macrocycle engineering and
protein grafting.

Amino Acid Composition of the Loop Sets. In motifs
that mediate PPIs, specific amino acids have been observed in
excess to the proportion typically found at protein
surfaces.20,32,33 These relative differences in amino acid usage
have been compared among helix, strand and loop motifs that
mediate PPIs.16,19,34 To see if these trends hold up for diverse
hot loops, we compared the relative amino acid abundances
among all five sets of hot loops. These are all highly similar
(Figure 2a and SI, Figures S3−S6), revealing that hot loops use
common residues as hot spots regardless of loop size or
structure. Charged residues, which have high abundance on
protein surfaces, are all under-represented in the hot loop sets.
This is particularly notable for lysine, which is among the most
common surface-exposed amino acids but is highly under-
represented in hot loops, even at non-hot-spot positions.
Despite their moderate relative abundance, aspartate, arginine,
and histidine appear often as hot spots. Nonpolar residues are
over-represented in hot loops, and as hot spots within those
loops. These results are consistent with the established concept
that buried regions of PPI interfaces closely resemble the
protein interior. Phenylalanine, tryptophan, and tyrosine are all
highly over-represented, and are the most common hot-spot
residues. As suggested by previous results,20,34 phenylalanine is
more prevalent as a hot spot within hot loops, and less
prevalent as a hot spot within strands or helices that mediate
PPIs. Interestingly, glycine (which cannot be assigned a ΔΔGres

value because it is not mutated during the computational
alanine scan) is overrepresented in the macrocycle loop set, but
not in any of the other four loop sets. We interpret this as a
need for the expanded conformational tolerance of glycine
within the shorter loop structures of the macrocycle set,
whereas the other four sets consist of longer loops that rely less
heavily on glycine for tight turns.

Figure 2. Global analysis of the macrocycle loop set. (a) The 7225 hot loops in the macrocycle loop set were analyzed with respect to amino acid
composition. Amino acid abundances in all positions, in hot-spot positions, and in non-hot-spot positions were calculated as relative fraction of the
abundance typically observed at the protein surface. Similar data for additional loop sets are shown in SI, Figures S3−S6. (b) The 7225 hot loops in
the macrocycle loop set were analyzed with respect to the presence of structural motifs as judged by PDBeMotif. Examples of each type of structural
motif are shown above each bar. These data and similar data for additional loop sets are provided in SI, Tables S4−S8.
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Global Structural Characterization of the Hot Loops.
Next, we sought to identify common structural motifs within
the hot loops. In previous work, structural motifs were
identified using PDBeMotif.20,35 PDBeMotif is the most
suitable system since it distinguishes among many subtly
different turn motifs, allowing for a highly descriptive analysis of
loop structures. To optimize this process for larger loop sets,
we wrote an automated assignment program that recognizes
structural motifs (as defined by PDBeMotif) that are at least
partially within a hot loop. An average of 2.2 structural motifs
per loop were identified for the macrocycle loop set (Figure
2b), and analysis of the longer loops identified even more
motifs per loop (SI Tables S4−S8). Although complete helical
turns are excluded from the macrocycle loop set, 45% of these
loops contain three or more contiguous residues in a helical
conformation. These often represent N- or C-terminal helix
caps. Within the larger loop sets, between 45% and 67% of
loops have single helical turns or helix caps. The biophysical
roles of helix caps in stabilizing helical structure are well-
established, but these striking findings implicate helix caps as
common recognition elements for PPIs.
When β-turns are defined using a characteristic hydrogen

bond, only 15.8% of hot loops in the macrocycle set have a
discrete β-turn. However, over 6000 of the 7225 hot loops
contain β-turn-like torsions, an unsurprising result considering
the loops are just 4 to 8 residues. The remainder of these loops

can be sorted into various turn-like structures including ASX
motifs, ASX turns, ST motifs, ST staples, ST turns, β-bulges,
and γ-turns. This structural categorization left only 8.6% of
macrocycle hot loops without a known structural motif, and
this percentage was only 3.5−6.2% for the larger hot loops.
These results reveal that the vast majority of hot loops are not
poorly structured. Rather, they contain recognizable turn motifs
that could be stabilized in the context of macrocyclic molecules.

Clustering of the Macrocycle Hot Loops. Global
analyses of amino acid usage and structural motifs are
informative, but we sought higher-resolution analysis of hot
loops based on structure. Thus, we performed unbiased,
structure-based clustering of all 1666 macrocycle hot loops that
meet multiple hot loop criteria. Backbone atoms of each loop
were optimally overlaid onto every other loop, and also loop
segments with the same number of residues. The backbone
RMSD values for the resulting overlays were used as a distance
metric, and cluster centers were identified in an unbiased
manner using the methodology of Rodriguez and Laio (Figure
3a and SI, Figures S7−S11).36 A total of 29 clusters were
identified, and selected clusters are shown in Figure 3b−h and
Figure 4 (all clusters are shown in SI, Figures S7−S11).
There were some surprising findings among the 29 clusters.

Even though only 29.3% of the loops adopt hairpin structures
as categorized by PDBeMotif, 17 of the 29 clusters are centered
around β-hairpins and hairpin-like turns (for example, clusters

Figure 3. Unbiased clustering of hot loops reveals common structural clusters. (a) Rodriguez-Laio decision graph36 for all loops of length 6 from the
1666-member set of macrocycle hot loops that fulfill multiple hot loop criteria. This decision graph allows identification of optimal cluster centers in
an unbiased manner. For each individual structure, it plots the local density (how many other structures are relatively close in RMSD) versus the
distance (in RMSD) to the nearest neighbor with higher density. Structures with high local density, but also a large distance between it and another
structure with higher density, are objectively defined as cluster centers.36 Individual loops that are not cluster centers are shown as black dots, and
loops identified as cluster centers are shown as colored diamonds. (b−h) Seven clusters of length 6 are shown, with letter and colors corresponding
to the cluster nodes shown in panel a. Longer loops are shown in full, though only 6 residues were used for clustering. Side chains are omitted for
clarity. Similar decision graphs and all 29 clusters are shown in SI, Figures S7−S11.
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in Figure 3b,c,d,g). Given the unbiased clustering method, this
indicates that these hairpins have distinct features that separate
them from each other, but relatively tight structural similarity
within each cluster. Thus, each of these clusters represents a
distinct class of hairpin that commonly mediates PPIs.
Despite the fact that only backbone atoms were used for

cluster overlays, many clusters contained highly conserved
residues at specific positions. In the four-residue β-turn cluster,
proline was conserved in 80% of hot loops at the third position,
consistent with common β-turn-stabilizing motifs (Figure
4a).37−39 One cluster of loops of length 8 had threonine
present at the fifth position in over 50% of sequences (Figure
4b). Glycine was the only residue with greater than 50%
conservation at individual positions within multiple clusters. In
fact, 10 of the 29 clusters had a single position with 50% or
greater conservation of glycine. One of these clusters is the
same cluster for which threonine was conserved at the fifth
position (Figure 4b): glycine is conserved at the sixth position,
though the two residues were not correlated. In the most
extreme case, one eight-residue cluster consists of 20 loops, 19
of which contain glycine at position 5 (Figure 4c). All together,
these observations agree with the global amino acid and
structure motif analyses, but provide a much higher degree of
resolution. We have identified 29 different common loop
structures used by nature to mediate PPIs, and conserved
features of each at the residue-by-residue level. These will
directly inform the development of specific macrocycle and
small-molecule scaffolds aimed at inhibiting separate clusters of
loop-mediated PPIs.
Web Site for Public Use of LoopFinder. At Loop-

Finder.Tufts.edu, we provide online tools for applying Loop-
Finder to user-initiated projects. Users can perform a loop
search within any multimeric PDB entry using custom
parameters for defining loops and custom criteria for classifying
hot loops. Raw ΔΔGres data are provided so users can analyze
the data using methods beyond hot loop identification. The
Web site also provides access to databases of the updated
macrocycle loop set, the antibody-CDR-like loop sets, and the
DARPin-like loop set, which can be searched online or
downloaded in full. Loop sets based on additional parameters
will be added, and loop sets will be periodically updated as the
PDB continues to grow.
Targeting the Eps15-EH2 Domain Using a Computa-

tionally Identified Loop From stonin2. Most of the newly
identified hot loops are within PPIs that have no known high-

affinity inhibitors. One such target was the adapter protein
Eps15 (epidermal growth factor substrate 15), which is bound
by a hot loop on stonin2 (Figure 5a).40 Eps15 is part of a

multiprotein complex that recruits the clathrin-mediated
endocytosis machinery to the cell membrane.41 Eps15 interacts
with proteins including epsin, synaptojanin-p170 and stonin2 to
recruit clathrin to the cell surface using its three EH (Eps15-
homology) domains.41−45 Upon binding to Eps15 through the
second of the EH domains (Eps15-EH2), stonin2 recruits the
adapter complex AP-2 to clathrin-coated pits.40,43 Genetic
disruption of this interaction results in impaired endocytosis
and reduced Ebola infectivity, demonstrating Eps15-EH2 as an
intriguing target for selective control of endocytosis.46−48

Prior work had shown that a 39-residue stonin2 fragment
binds Eps15-EH2 with a Kd of 0.15 μM, and an unrelated,
phage-display-derived peptide binds Eps15-EH2 in the 500 μM
range.49−51 These are the only Eps15-EH2 ligands reported to
date. LoopFinder identified an 8-residue loop on stonin2 that
fulfills all three hot loop criteria (Figure 5a). Notably, although
this hot loop contains the known Asn-Pro-Phe (NPF) turn
motif that mediates EH domain interactions,40,50 we hypothe-
sized that the loop structure, plus the additional hot spot at
W309, would make it a better starting point for producing
peptide-based inhibitors. To test this hypothesis, a 10-residue
peptide from S308 to L316 (ST-lin) was synthesized and
assessed for binding to Eps15-EH2 using isothermal titration
calorimetry (ITC). ITC was necessary because no other
biochemical binding assays had been developed for Eps15-EH2.
ST-lin had a Kd of 18.2 ± 3.4 μM for Eps15-EH2 (Table 1),
verifying that LoopFinder had indeed identified a critical loop
for the stonin2-Eps15 interaction.

Diversity-Oriented Macrocyclization Strategy. We
sought to translate the stonin2 hot loop into an inhibitor, but
rational design of small, well-structured cyclic peptides is
currently an intractable problem.26−28 Instead, we devised a
strategy to test systematically diverse conformational con-
straints. We chose to adapt methods for peptide cyclization via
dithiol bis-alkylation due to the robustness of the reaction and
the variety of structurally diverse linkers available (Figure
6).52−57 First, we synthesized parent peptides containing the
hot loop flanked by the thiol-containing amino acids cysteine or
penicillamine. Unpurified, crude peptides were divided into
separate vessels and individually cyclized using a panel of
dibromomethyl aryl linkers. The linkers used were dibromo-o-
xylene (oxy), dibromo-m-xylene (mxy), dibromo-p-xylene

Figure 4. Selected clusters with conserved positions. (a) A cluster of
33 four-residue hot loops that conform to a β-beta-turn-like structure.
Proline is present in 78.8% of these loops at position 3. A distinct
subcluster (magenta) is observed for the proline-free loops. (b) A
cluster of 17 eight-residue hot loops. Threonine is present in 52.9% of
these loops at position 5 (magenta), and glycine is present in 52.9% of
these loops at position 6 (orange), though these are not correlated. (c)
A cluster of 20 eight-residue loops with glycine 95% conserved at
position 5 (magenta). Side chains, except for the conserved proline
and threonine, are omitted for clarity.

Figure 5. Hot loop within the stonin2-Eps15 interaction. (a) A hot
loop on stonin2 (ribbon) was identified with three hot spots (orange
side chains) predicted to be important for binding to Eps15-EH2
(surface). Figure rendered from PDB 2JXC.40 The orange ribbon
corresponds to peptide ST-lin. (b) Structure of ST1-oxy. Predicted
hot spots are shown in orange and the ortho-xylene (oxy) linker is
shown in blue.
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(pxy), and 2,6-di(bromomethyl)pyridine (pyr) (SI, Figure
S12). A linear, dibenzylated control peptide was also
synthesized using benzyl bromide (dbz). Solution-phase
cyclization reactions went to >90% completion in 2 h or less
at room temperature, and showed minimal cyclodimer
formation even without high dilution (SI, Figure S13).58 This
procedure provides late-stage conformational diversification
using a robust, solution-phase cyclization reaction that is easily
run in parallel.
Application of the Diversity-Oriented Strategy to

Cyclization of the stonin2 Hot Loop. A small initial library
of cyclized loops was synthesized and analyzed for binding to
Eps15-EH2 via ITC. ST1-oxy (chemical structure shown in
Figure 5b) and ST1-mxy showed similar binding, with Kd
values of 0.33 and 0.37 μM, respectively (Table 1 and SI, Table
S10). The isomeric peptide with the para-xylene linker, ST1-
pxy, had 10-fold poorer binding affinity. The linear peptide
ST1-dbz, in which both cysteines are benzylated, had no
measurable binding up to 40 μM. We attribute these results to

conformational restriction within ST1-oxy and ST1-mxy that
promotes higher-affinity binding to Eps15-EH2. The pyridine-
containing cyclic peptide ST1-pyr has a 5-fold lower affinity
than its closest analog ST1-mxy, demonstrating that linker
electronics can also play a role in peptide conformation and/or
target recognition. In this case, the pyridine group in the linker
may destabilize the favored structure by engaging in unwanted
dipole-mediated interactions, such as repulsion with another
dipole within the peptide or the binding site, intramolecular
hydrogen bonding, or hydrogen bonding to water.
To test the computational prediction of specific hot spots

within the loop, three analogs of ST1-oxy were prepared that
substituted each predicted hot-spot residue with alanine.
Substitution of the tryptophan (ST1-W3A-oxy) resulted in a
5-fold loss in binding affinity (Table 1). This residue originally
had a negative ΔΔGres as calculated by Rosetta-based alanine
scanning, supporting our methodological changes for energy
analysis. Mutation of either the asparagine or phenylalanine hot
spots (ST1-N7A-oxy and ST1-F9A-oxy) resulted in a complete
loss of binding. These residues reside within the conserved
asparagine-proline-phenylalanine (NPF) motif that mediates
most EH domain interactions.50 Overall, these results confirm
the importance of the NPF motif and also demonstrate a
substantial contribution by the rest of the hot loop.

Using a Competition Binding Assay To Provide
Further Structure−Activity Data for ST1-oxy. With a
submicromolar ligand in hand, we next developed a higher-
throughput assay to assess binding to Eps15-EH2. We adapted
the ST1-oxy peptide into a probe for fluorescence polarization
(FP) assays (Flu-ST1-oxy, SI Figure S14). FP assays measured
a Kd of 0.51 μM for the probe binding to Eps15-EH2 (Figure
7a). Eps15-EH2 is only one example in a wide class of EH

domains, all of which recognize NPF and DPF motifs with
native affinities in the 10−100 μM range under physiological
conditions.59 The specificity of our probe was assessed using
EHD1-EH and Reps1-EH domains. Flu-ST1-oxy was 30-fold
more selective for Eps15-EH2 over these related domains
(Figure 7a).
The FP probe was then applied in a competition assay to

screen further compounds. Results for the initial panel of cyclic
peptides directly paralleled the ITC results (Table 1, Figure

Table 1. Selected Peptides and Their Binding Affinities and
Inhibitory Potenciesa

peptide, linker sequence Kd (μM) IC50 (μM)

ST-lin SPWRATNPFL 18.2 ± 3.4 >100
ST1-oxy CPWRATNPFC 0.33 ± 0.01 2.2 ± 0.3
ST1-mxy CPWRATNPFC 0.37 ± 0.02 2.3 ± 0.2
ST1-pxy CPWRATNPFC 3.67 ± 0.17 41.3 ± 7.9
ST1-pyr CPWRATNPFC 1.53 ± 0.05 9.1 ± 3.3
ST1-dbz CPWRATNPFC N.B. 27.5 ± 8.3
ST1-oxy-W3A CPARATNPFC 1.7 ± 0.28 8.3 ± 0.7
ST1-oxy-N7A CPWRATAPFC N.B. >100
ST1-oxy-F9A CPWRATNPAC N.B. >100

aAll peptides were N-terminally acetylated and C-terminally amidated.
Linkers between the two cysteines are indicated in peptide name (see
SI, Figure S1 for structures). Kd values were obtained from three
independent ITC experiments (SI, Figures S4−S12), and IC50 values
were obtained from three independent FP experiments. N.B. indicates
no binding observed to the limit of solubility.

Figure 6. Strategy for parallel synthesis and screening of constrained
loops. The robustness of the thiol bis-alkylation reaction allows
complete freedom with respect to different loop lengths, sequences,
and incorporation of non-natural amino acids. It also allows broad
diversification of the linker at a late synthetic stage due to the ability to
incorporate a variety of thiol-containing amino acids and dibromo
linker reagents. Specific linker reagents used in this work include
dibromo-o-xylene (oxy), dibromo-m-xylene (mxy), dibromo-p-xylene
(pxy), and 2,6-di(bromomethyl)pyridine (pyr). A linear, dibenzylated
control peptide was also synthesized using benzyl bromide (dbz).

Figure 7. Binding and competitive inhibition data for cyclic peptides
based on the stonin2 hot loop. (a) Direct binding of Flu-ST1-oxy to
EH domains Eps15-EH2 (red), EHD1-EH (blue) and Reps1-EH
(green). Curve fits shown are consistent with Kd values of 0.51 ± 0.06
μM, 14.8 ± 1.7 μM, and 15.8 ± 1.1 μM, respectively (SI, Figures S24−
S26). (b) Flu-ST1-oxy was used as an FP competition probe to obtain
valuable structure−activity relationships for ST1-oxy. Shown are
inhibitors ST1-oxy (red), ST1-mxy (blue), ST1-pyr (purple), ST1-
pxy (green), and ST1-dbz (magenta). IC50 curve fits shown reflect
values reported in Table 1 (SI, Figures S28−S32).
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7b), verifying that binding affinity depends on macrocycle
conformation. This was further supported by results with a
series of similar cyclic peptides that lack the proline in position
2, based on linear peptide CWRATNPFC. This panel showed
roughly a 10-fold decreased activity in competition assays, but a
similar dependence on the linker in modulating activity (SI,
Table S11).
The FP competition assay enabled more rapid exploration of

structure−activity relationships for ST1-oxy. We tested 27
analogs of ST1-oxy that varied key aspects of the linker and hot
spots (SI, Figures S24−S48 and Table S11). Replacing the
acetyl cap with a pentynyl cap yielded pST1-oxy, with a 2-fold
improvement in IC50. The added alkyne group will be critical
for ongoing studies to assess biological activity and cell
penetration. In addition, the C-terminal carboxamide was
omitted via synthesis of the linear peptide using side-chain-
loaded cysteamine resin. This yielded pST1b-oxy, which had an
IC50 comparable to ST1-oxy. Replacing the phenylalanine with
the larger 1-naphthylalanine reduces inhibitory potency by 10-
fold, whereas substitution of the tryptophan with 1-
naphthylalanine results in 2-fold improvement in inhibitory
potency. Additional structure−activity data are provided in the
SI (Table S11). Overall, these extensive structure−activity data
support a binding mode similar to that of the native stonin2
domain (vide inf ra).
This strategy for late-stage conformational diversification can

not only take advantage of different linkers but also different
thiol-containing amino acids. D-Cysteine, L-homocysteine, and
D-homocysteine are straightforward options for diversifying
macrocycle size and conformation. We found that penicillamine
can be also used with no effect on the robustness of the
cyclization reaction. Penicillamine represents an excellent
addition to this strategy, adding torsional restriction relative
to cysteine (Figure 6). In this case, substitution of one or two
penicillamines within ST1-oxy resulted in peptides with slightly
higher IC50 values (SI, Table S11).
Solution Structure of ST1-oxy in Water. To determine

whether ST1-oxy was truly recapitulating the structure of the
native hot loop, we solved the solution structure of ST1-oxy in
water using data from 2D-NMR. Chemical shifts were well-
dispersed and deviated consistently from values expected for
random-coil conformation, indicating a high degree of overall
structure (SI, Table S12 and Figures S49−S54). Several
medium- and long-range NOEs were observed (Figure 8a
and SI, Table S13 and Figure S55). These NOEs plus 12
dihedral angle restraints were used in molecular dynamics
simulated annealing to calculate solution structures. The
ensemble of 30 lowest-energy structures, shown in Figure 8b,
has an overall backbone RMSD of 0.37 Å. Although simulation
results must be interpreted carefully, the chemical shifts and the
NOEs observed for residues R4 through C10 independently
indicate that ST1-oxy is well-structured in the NPF turn and
the residues immediately flanking the turn. To confirm that
ST1-oxy displays an unusually high degree of structure in
aqueous solution, we used an iodide-mediated fluorescence
quenching assay (SI, Figure S56).60−62 These results showed
substantially lower quenching of intrinsic Trp fluorescence for
ST1-oxy compared to ST1-dbz, providing an independent
confirmation that ST1-oxy is highly structured in aqueous
solution.
The solution structure of ST1-oxy reveals successful mimicry

of the structure of the stonin2 hot loop (Figure 8c). The side
chains of the Phe and Asn residues extend into solvent on a

shared face, forming an epitope that matches the critical hot
spots on stonin2. This epitope docks well into the binding
pocket of Eps15-EH2 (Figure 8d).49 In models of the complex,
the ortho-xylene linker sits in the pocket occupied by the hot
spot Trp in the stonin2-Eps15 structure, with the Trp side
chain playing a secondary role in molecular recognition and
structural stabilization. This predicted binding mode is
supported by the extensive structure−activity data (SI, Table
S11). Future work will reveal additional determinants of robust
aqueous structure and target binding, allowing this well-
structured scaffold to be applied to other EH domains and
other loop-mediated PPIs with similar loop structure.

■ CONCLUSIONS
Loop-mediated PPIs are found in a diverse array of biomedi-
cally relevant protein complexes but have received little
attention compared to PPIs mediated by other secondary
structure motifs. LoopFinder is a broadly applicable tool for
identifying loop-mediated PPIs, and for the development of
those loops into macrocycles as potential PPI inhibitors. In this
work, we improved computational procedures and identified
common structures and motifs used by nature for loop-
mediated PPIs. We found that hot loops typically contain
known turn structures, suggesting that well-structured macro-
cycles can be designed as inhibitors. The 29 structural clusters
we identified among the macrocycle hot loops serve as a
promising basis for developing useful scaffolds for peptide,
protein and small molecule inhibitors.
In this work, we also demonstrated a general strategy for the

translation of hot loops into PPI inhibitors, producing
submicromolar ligands for the Eps15-EH2 domain. 10-mer
cyclic peptides are rarely well-structured in aqueous solution,

Figure 8. Solution structure of ST1-oxy in water. (a) Diagram showing
key NOEs for structure determination of ST1-oxy. Key short-range
NOEs are indicated by blue arrows, and key medium- and long-range
NOEs are indicated by red arrows. A full listing of NOEs and torsional
angles used as restraints for simulated annealing are given in SI, Table
S13 and Figure S55. (b) The 30 lowest-energy solution structures of
ST1-oxy resulting from simulated annealing. Backbone RMSD for
these structures is 0.37 Å. Structural data and refinement statistics are
given in SI, Table S14. (c) Representative NMR structure of ST1-oxy
(tan) overlaid with structure of stonin2 hot loop (blue). (d) Model for
ST1-oxy binding to Eps15-EH2 (surface). Images omit the side chain
of Arg4 for clarity.
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especially when they lack canonical α-helical or β-hairpin
structure. Several lines of evidence support that ST1-oxy is
surprisingly well-structured, perhaps due to cooperativity
between the cyclization geometry and the observed NPF
turn. ST1-oxy has only 2-fold weaker affinity than the native
binding partner, and has 30-fold selectivity for Eps15-EH2 over
related EH domain proteins. Structure−activity relationhips
indicated that the key hot spots and overall loop structure
identified by LoopFinder were critical for the high degree of
affinity and selectivity observed for ST1-oxy compared to prior
EH domain ligands.40,50,59,63 ST1-oxy is a promising starting
point for developing selective inhibitors of Eps15-mediated
endocytosis.
Although the specific linker geometry preferred by stonin2-

derived peptides may not generalize directly to other loops (the
way that one helix-stabilizing “staple” can be generalized to
many helical peptides),24,64 the approach taken here is robust
enough to allow rapid parallel testing of many conformations
for each individual hot loop. The chemistry is readily extended
to many thiol-containing amino acids and many linkers,
including naphthyl and biphenyl linkers with various sub-
stitution patterns (Figure 6).54−57 By applying a large set of
linkers and thiol-containing amino acids, we are currently
adapting this strategy to produce hundreds or thousands of
conformationally diverse peptides in arrayed and pooled
formats.
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